
DISeR: Designing Imaging Systems with Reinforcement Learning

Tzofi Klinghoffer* Kushagra Tiwary* Nikhil Behari Bhavya Agrawalla Ramesh Raskar
Massachusetts Institute of Technology

Abstract

Imaging systems consist of cameras to encode visual in-
formation about the world and perception models to in-
terpret this encoding. Cameras contain (1) illumination
sources, (2) optical elements, and (3) sensors, while per-
ception models use (4) algorithms. Directly searching over
all combinations of these four building blocks to design an
imaging system is challenging due to the size of the search
space. Moreover, cameras and perception models are often
designed independently, leading to sub-optimal task per-
formance. In this paper, we formulate these four build-
ing blocks of imaging systems as a context-free grammar
(CFG), which can be automatically searched over with a
learned camera designer to jointly optimize the imaging
system with task-specific perception models. By transform-
ing the CFG to a state-action space, we then show how
the camera designer can be implemented with reinforce-
ment learning to intelligently search over the combinato-
rial space of possible imaging system configurations. We
demonstrate our approach on two tasks, depth estimation
and camera rig design for autonomous vehicles, showing
that our method yields rigs that outperform industry-wide
standards. We believe that our proposed approach is an
important step towards automating imaging system design.
Our project page is https://tzofi.github.io/diser.

1. Introduction
Cameras are ubiquitous across industries. In au-

tonomous vehicles, camera rigs provide information on the
ego-vehicle’s surroundings so it can navigate; in biology,
microscopy allows new viruses to be studied and vaccines
to be developed; and in AR/VR systems, advanced headsets
provide immersive reconstructions of the user’s surround-
ings. In each of these applications, camera configurations
must be carefully designed to capture relevant information
for downstream tasks, often done with perception models
(PMs). PMs are typically implemented as neural networks
and use the output of cameras to predict information such as
where other vehicles are on the road, what type of molecule

* Equal contribution.

Figure 1: Overview: The camera designer selects imaging hard-
ware candidates, which are used to capture observations in sim-
ulation. The perception model is then updated and computes the
reward for the camera designer using the captured observations. In
our paper, we implement the camera designer with reinforcement
learning and the perception model with a neural network.

is present in a biological sample, or where the user is located
within a virtual environment. Yet, despite their interdepen-
dence, cameras and PMs are often designed independently.

Designing camera systems is non-trivial due to the vast
number of engineering decisions to be made. For example,
consider designing a camera rig on an autonomous vehicle.
Suppose the ego-vehicle is limited to up to 5 lidar sensors,
5 radars, and 5 RGB sensors, with 1,000 possible spatio-
temporal resolutions. If there are 1,000 discrete candidate
camera positions on the ego-vehicle, the search space ex-
pands to 108 different configurations. In practice, the search
space can become many orders larger with more possibili-
ties for each imaging system building block. Furthermore,
because the search space is non-differentiable, there exists a
need to develop efficient methods to effectively traverse the
search space for an optimal imaging configuration.

In our paper, we propose using reinforcement learning
(RL) to automate search over imaging systems. We first
define a language for imaging system design using context-
free grammar (CFG), which allows imaging systems to be
represented as strings. The CFG serves as a search space for
which search algorithms can then be used to automate imag-
ing system design. We refer to such an algorithm as a cam-
era designer (CD) and implement it with RL. RL allows us
to search over imaging systems without relying on differen-
tiable simulators and can scale to the combinatorially large
search space of the CFG. Inspired by how animal eyes and
brains are tightly integrated [28], our approach jointly trains

https://tzofi.github.io/diser/

Figure 2: Approach: Our approach allows a camera configuration and perception model (PM) to be co-designed for task-specific imaging
applications. At every step of the optimization, the camera designer (CD), implemented with reinforcement learning, proposes candidate
camera configurations (1-2), which are used to capture observations and labels in a simulated environment (3-4). The observations and
labels are added to the perception buffer (5) and used to compute the loss and reward, while the N most recent observations in the perception
buffer are used to train the PM. The reward is propagated to the CD agent which proposes additional changes to the candidate camera
configuration. After the episode terminates, the CD agent is trained using proximal policy optimization (PPO) [39] until convergence.

the CD and PM, using the accuracy of the PM to inform how
the CD is updated in training (Fig. 1). Because searching
over the entire CFG is infeasible with available simulators,
we take the first step of validating that RL can be used to
search over subsets of the CFG, including number of cam-
eras, pose, field of view (FoV), and light intensity. First, we
apply our method to depth estimation, demonstrating the vi-
ability of jointly learning imaging and perception. Next, we
tackle the practical problem of designing a camera rig for
AVs and show that our approach can create rigs that lead to
higher perception accuracy than industry-standard rig de-
signs. While AV camera rigs are one of many potential ap-
plications of our method, to the best of our knowledge, we
are among the first to propose a way to optimize AV camera
rigs. Our paper makes the following contributions:

• Imaging CFG: We introduce a context-free grammar
(CFG) for imaging system design, which enumerates
possible combinations of illumination, optics, sensors,
and algorithms. The CFG can be used as a search space
and theoretical framework for imaging system design.

• Co-Design: We demonstrate how task-specific cam-
era configurations can be co-designed with the percep-
tion model by transforming the CFG into a state-action
space and using reinforcement learning (Fig. 2). Our
approach can converge despite the reward function be-
ing jointly trained with the policy and value functions.

• Experimental Validation: We demonstrate our
method for co-design by applying it to (1) the task of
depth estimation using stereo cues, and (2) optimizing
camera rigs for autonomous vehicle perception, show-
ing in both cases that camera configuration and percep-
tion model can be learned together.

2. Related Work
2.1. Joint Optimization of Optics & Algorithms

Our work is most closely related to end-to-end optimiza-
tion of cameras, which is an area of research focused on
jointly optimizing components of cameras together with
an algorithm, typically a neural network. Instead of re-
lying on heuristics, the goal of end-to-end optimization is
to produce images that optimize the pertinent information
required for the task. Existing work primarily focuses on
optimizing the parameters of the optical element, sensor,
and image signal processor of a single camera. Applica-
tions of end-to-end optimization include extended depth of
field and superresolution imaging [41], high dynamic range
(HDR) imaging [34, 42], demosaicking [9], depth estima-
tion [2, 11, 22, 23], classification [10] and object detection
[12, 36, 37]. Tseng et al. [43] employ gradient descent on a
non-differentiable simulator by training a proxy neural net-
work, whereas we directly operate on the non-differentiable
simulator with RL. For a more comprehensive review of
end-to-end optimization, we refer readers to [26]. In con-
trast to end-to-end optimization methods, we focus on op-
timizing over the much larger space of possible imaging
system designs, rather than the parameters of an individ-
ual camera. Our search space contains varying illumination
sources, optics, sensors, and algorithms, each with many
parameters. Rather than using stochastic gradient descent
for optimization, we use reinforcement learning, allowing
our approach to be used with non-differentiable simulators.

2.2. Reinforcement Learning

Deep reinforcement learning (RL) has become widely
used in recent years as a way to do sequential decision mak-

ing for a wide array of problems, such as protein folding
[24], learning faster matrix multiplication [17], and auto-
mated machine learning [3]. Many RL techniques focus on
the exploration-exploitation trade-off, where an agent must
learn to balance exploring new states with exploiting pre-
viously visited states that lead to high reward. RL is also
used for many combinatorial optimization problems [33].
In our work, we take inspiration from automated chip place-
ment [35], which, like our approach, is formulated to allow
an RL agent to place a new component at every step and
select the placement of that component. Like many other
problems RL has been applied to, imaging contains a high
dimensional search space. In our work, we use proximal
policy optimization (PPO) [39], which has been used for
combinatorial search in past work [45].

Context-free grammars (CFGs) have been used to design
machine learning (ML) pipelines, which are combinations
of data-flows, ML operators, and optimizers [15][32][25].
Typically, ML pipeline design is done via a search over
strings in the CFG using tree search algorithms, such as
Monte Carlo tree search or upper confidence trees [27]
[44]. CFGs have also been adopted for robot design [46],
molecule generation [20], and material design [19]. We use
CFG to functionally represent imaging systems as combi-
nations of illumination, sensors, optics and algorithms such
that the output string describes a camera configuration and
perception model that can be used to solve a desired task.

3. Automated Imaging System Design

3.1. Language for Imaging

We define the configuration space of imaging systems
using context-free grammar (CFG) as it allows for a flex-
ible configuration space that can be searched. A typical
context-free grammar, G, is represented as a tuple, G =
(V,Σ, P,R), where V corresponds to non-terminal sym-
bols in the grammar, Σ corresponds to terminal symbols,
P corresponds to the production rules, and R is the start
symbol. The goal of our proposed CFG is to allow the con-
struction of strings to represent arbitrarily complex imag-
ing systems, which usually consist of illumination sources,
optical elements, sensors to convert light into digital sig-
nals, and algorithms that decode the scene. For example,
consider the task of depth estimation that can be done in
numerous ways. One solution is depth from stereo, which
involves placing two cameras, c1, c2, in the scene at points,
p1, p2, with some baseline. Each camera has an optical el-
ement, o1 = (f,d), with a focal length, f , and aperture, d,
and a sensor, s1 = ((h,w),t), with spatial and temporal res-
olutions, (h,w) and t, respectively. Thus the cameras can be
expressed as c1 = (o1, s1) and c2 = (o2, s2). An algorithm
can decode the outputs of the two cameras to produce depth,
and can be implemented with correspondence-matching [6],

R → XSXA (1)
X → IX|OSX|A2X|ϵ (2)
O → OO|ϵ (3)
A1 → A1A1|A1 (4)
A2 → A2OS|A2I|A2S|ϵ (5)
S := {spshwstsλsq}p∈R6,h,w,t,q∈Z (6)
O := {ofod}f∈R,D∈Z (7)
I := {ipii}p∈R6,i∈Z (8)

A1 := {ann, afourier, ...} (9)
A2 := {autofocus, ...} (10)

Figure 3: Context-free grammar (CFG) for imaging: Produc-
tion rules (1-5) and alphabets (6-10) for our proposed CFG for
designing imaging systems. R is the starting symbol from which
a design starts. All imaging systems must have at least one sensor,
S, and one algorithm, A. The grammar allows arbitrary physi-
cally plausible combinations of illumination (I) optics (O), sen-
sors (S), and algorithms (A), each defined in their respective al-
phabet above. A1 refers to algorithms that process the output of
hardware, while A2 refers to algorithms that control hardware.

(ast), or deep stereo [31], (ads). The full system can be de-
scribed as a string, s1 = “c1c2ast” or s2 = “c1c2ads”.
Another way to estimate depth is with active illumination
or time-of-flight (ToF) imaging. We can represent lidar as
an algorithm, acontrol, that illuminates the scene at the same
point with a laser, l1, and ToF sensor, sToF . We can de-
scribe this system as slidar = acontroll1sToFaToF . These ex-
amples illustrate how CFG can represent imaging systems
with different illumination, optics, sensors, and algorithms
as strings. The goal of the proposed CFG is not to describe
how the individual components of an imaging system are
made, e.g. their electronics, but rather to describe the func-
tion of each component. Next, we define the grammar’s
alphabet and production rules.
Grammar. Our proposed CFG can be stated as
G = (V,Σ, P,R). We define the variables as V =
{X,O,A1,A2}, each defined in the following sections,
and the terminals, Σ, which we refer to as alphabets, as
Σ = {I,O,S,A1,A2}, where {I} is illumination, {O}
is optics, {S} is sensors, and {A1} and {A2} are algo-
rithms. Each alphabet contains possible components and
parameters, defined in lower case, e.g. ann. Each compo-
nent within an alphabet is parameterized by its functionality,
e.g. focal length, rather than an off-the-shelf component.
We describe each alphabet below and in Fig. 3.
Illumination. The illumination alphabet, I, functionally
represents different types of possible illuminations. In
imaging, illumination can be represented with many param-
eters, such as duration (d), intensity (i), color, wavelength
(λ), polarization η, pose (position & orientation), (p) and
modulation in space and time [5]. In the scope of this work,

we consider pose and intensity. These can later be extended
to other forms of illumination.
Optics. We define the optics alphabet, O, to capture the
most important (but not exhaustive) optical properties in an
imaging system: focal length (f) and aperture (D). The op-
tics alphabet can be extended to include more complex tech-
niques such as phase masks or diffractive optical elements
(DOE). The non-terminal O indicates that optical elements
can be stacked to create a multi-lens system.
Sensors. The sensor alphabet, {S}, functionally describes
different types of sensors, such as RGB and SPAD. We pa-
rameterize a sensor by its pose sp, spatial (or angular) res-
olution shw, temporal resolution st, bit quantization sq and
wavelength sλ. For example, a SPAD sensor has higher
temporal resolution (picosecond scale) and generally lower
spatial resolution (on the order of 1,000 to 100,000 pixels),
while a typical RGB sensor (CMOS) has a higher spatial
resolution (hundreds of megapixels), but a lower temporal
resolution (30 fps). Similarly, quantization (for example)
can be varied between 1, 8 or 12 bits. The pose is the posi-
tion (x,y,z) and the orientation (pitch, yaw, and roll) of the
sensor in 3D space, sp ∈ R6.
Algorithms. Algorithms are needed to decode raw images
and control other alphabets. We denote the alphabet for al-
gorithms with two sets: {A1,A2}. A2 is the set of algo-
rithms that affect subsequent illumination, optics, and sen-
sors (e.g. autofocus, controlling where to shine illumina-
tion), whereas A1 are algorithms that decode the incoming
data from the sensors for a given task. These algorithms
include standard imaging operators, such as the Fourier
transform, backprojection, Radon transform, Gerchberg-
Saxton algorithm, photometric stereo, and more. Addi-
tionally, A1 includes neural networks, which can perform
detection, classification, etc. Due to the production rule,
A → A1A|A1, A1 can be repeated and stacked together.
For example, an algorithm can be designed that takes the
Fourier transform of the input data and feeds it through a
multilayer perceptron (MLP).
Production Rules. We define a set of production rules,
shown in Fig. 3, that can produce strings representing pos-
sible imaging system configurations. In our formulation,
every imaging system includes at least one sensor and algo-
rithm. The X accounts for imaging systems with different
illumination, optics and sensors. In all cases, the string must
end with at least one algorithm that outputs the desired task.
Additionally, each A2 also requires an illumination, optics
component, or sensor that it controls. The production rules
account for multiple sensors and illuminations that illumi-
nate and sense different parts of the scene.

3.2. Imaging Design with Reinforcement Learning

The proposed context-free grammar (CFG) defines ways
of combining illumination, optics, sensors, and algorithms

to form an imaging system. The goal of our work is to au-
tomate imaging system design by searching over the CFG.
Because the output of the cameras in the imaging system
must be well suited for a specific, downstream task, we co-
design them with the task-specific perception model (PM).
We next propose using a learned camera designer (CD) to
automatically search over the CFG. We implement the CD
with reinforcement learning (RL) because (1) the combina-
tion of continuous variables in our CFG causes an explosion
in the search space, which, as a result, makes search with
methods such as Monte Carlo tree search (MCTS) [7] or
alpha-beta search [38] intractable, and (2) many advanced
imaging simulators are not differentiable [18, 16, 21], and
thus gradient descent cannot be directly applied. Our prob-
lem is well suited for sequential decision making because
the task performance achieved with each choice of camera
configurations directly affects subsequent design choices.
Overview: Our approach is illustrated in Fig. 2. The in-
put is a task-specific loss and reward function. When opti-
mization starts, the imaging system contains no hardware.
At each step, the CD selects whether to add a component
into the system and the component’s parameters (Fig. 2a-
b). A simulator can then be used to collect observations
from the candidate camera configuration (Fig. 2c). These
observations are used by the perception model to compute
the reward and loss (Fig. 24-7). The reward is used to train
the CD and the loss is used to train the perception model.
This loop repeats until a camera configuration and percep-
tion model have been created that maximize task accuracy.
RL Formulation: We transform the CFG into a state-action
space which the RL agent, henceforth referred to as the
CD, can search over. We use proximal policy optimization
(PPO) to train the CD and model the RL problem with the
following states, actions, and rewards:

• states, S: the possible states of the world, which, in
our case, are the possible enumerations of illumina-
tion, optics, and sensors, and possible observations that
can be captured from each enumeration.

• actions, A: the actions an agent can take at any step,
which, our case, consist of choosing illumination, op-
tics, sensors, algorithms, and all parameters.

• reward, R: the reward for taking an action in a state,
which, in our case, is computed by passing observa-
tions from the candidate camera configuration into the
PM to compute accuracy for a target task.

Simulation & Environment: Unlike standard RL prob-
lems where the agent acts based on observations from
a fixed sensor, the observations provided to the CD can
change, meaning the CD has to learn how to act with vary-
ing input (e.g. varying numbers of images, sensor param-
eters, etc). The simulator should thus be able to render

Figure 4: Depth from Stereo Setup: The goal of this experiment
is to estimate the depth of a sphere using stereo cues. The cam-
era designer (CD) places up to C cameras within the green box.
Camera poses and images are input to the perception model (PM)
which outputs a predicted depth. We render environments that are
devoid of monocular cues to force (1) the CD to learn to obtain
multi-view cues and (2) the PM to learn to exploit these cues.

data from all potential imaging systems that can be derived
from the CFG. Because simulators that encompass the en-
tire CFG are not available, we search over subsets of the
CFG to validate our method. While we use a simulator, a
dataset can also be used with offline RL approaches [29].

Perception Model: In our experiments, we set the algo-
rithm, A, to be a trainable neural network (NN). The NN’s
role is to produce a task prediction given arbitrary observa-
tions from candidate camera configurations. The NN must
be able to map a varying input (number of observations,
modality, etc.) to a fixed output. For example, the CD may
increase the number of sensors in the system beyond one,
leading to multiple observations. We propose using trans-
formers to mitigate this problem since they map a dynamic
number of observations to a fixed-size feature embedding
by converting inputs into sequences of patches [40]. To re-
duce noise in the gradients when jointly training the PM
with the CD, we propose a perception buffer (Fig. 2.5),
which stores the previous N observations from candidate
camera configurations, allowing the PM to be trained over
all data in the buffer at each step.

4. Experiments and Results
Overview: We apply our method to two problems, both of
which exercise a subset of our proposed CFG to validate
DISeR. First, we show how DISeR can jointly learn a cam-
era configuration and perception model to solve depth esti-
mation. Second, we apply DISeR to a practical engineering
problem of designing camera rigs for AVs. The same for-
mulation is used in both problems: at each step of optimiza-
tion, the CD chooses whether to add a camera to the imag-
ing system by predicting an action, p, in [0, 1], referred to

Figure 5: Joint Camera and Perception Design for Stereo
Depth. We train the CD and PM from scratch to estimate depth
of a sphere. (a) Our reward function consistently improves, even
though it constantly changes due to the PM concurrently training
with the CD. (b) The CD learns to maximize the baseline between
different cameras over the course of 1000 experiments when plac-
ing 3 cameras. (c) The loss decreases with more placed cameras
and larger distances between the cameras, which shows that the
PM learns to exploit multi-view cues.

as camera placement probability, along with camera param-
eters. When p is greater than a threshold of 0.5, a camera
is added with the predicted parameters. The camera param-
eters for each problem are shared in the sections below. In
both problems, we compare our approach against random
search, which we note is often very difficult to beat [4] [48].

4.1. Stereo Depth Estimation

4.1.1 Experimental Setup

Environment The goal of the first experiment is to es-
timate the depth of a sphere using stereo cues. The CD
is allowed to place a maximum of C cameras in the scene
(though it can also place fewer cameras). In theory, the CD
could place a single camera and learn monocular cues (e.g.
shading/lighting, texture, linear perspective). However, we
simulate an environment where monocular cues are unavail-
able, making monocular depth estimation ill-posed.

Our environment consists of a randomly placed white
sphere with a random radius, as shown in Fig. 4. We use
PyRedner [30] to render images. The sphere position and
radius are randomly sampled per episode from (r, x, z) =
{r ∈ [3,9], x ∈ [−10, 10], z ∈ [1, 60]}. The depth is the
z distance from the sphere to the average position of the
placed cameras. The scene is illuminated such that shading
cues and the position of the light source are absent as cues.
The only feedback that the PM and CD receive is a loss be-
tween the predicted and ground truth depth. The goal of
rendering such an environment is to determine whether the
CD can adapt to the context and realize that only a multi-

view system can estimate depth. In parallel, the PM learns
to exploit multi-view stereo cues. We show the supervised
results of this experiment for validation in the supplement.
Action Space: The action space for depth estimation is
(p, x, z, θ) = {p ∈ [0,1], x ∈ [−15, 15], z ∈ [69, 80], θ ∈
[−60◦, 60◦]}, where p is camera placement probability,
(x, z) is location (see Fig. 4) and θ is yaw. FoV is 45◦.
Experiment Details: We use a modified version of the vi-
sion transformer (ViT) architecture [13] [1] that accepts an
arbitrary number of images of fixed resolution and their cor-
responding camera parameters as input, and outputs a scalar
depth. The spatial resolution is fixed to (128, 128). The
maximum number of cameras the CD can place is set to
C = 5. The CD’s PPO backbone and the perception model
share the same network architecture and are initialized ran-
domly. The reward is computed before updating the percep-
tion model and is re-scaled to [−1, 1]. Additional informa-
tion about the training is provided in the supplement.

4.1.2 Results and Discussion

We evaluate the joint training (Fig. 5a), the learned policy
(Fig. 5b), and the perception model (Fig. 5c) in isolation.
Fig. 5a illustrates how our system maximizes reward when
co-designing the PM with the camera design. The reward
function is dictated by the output of the PM, but the PM is
concurrently training with the camera design, which results
in inconsistent rewards during training for the same states.
In spite of this fact, our model is able to consistently in-
crease the reward, even at the beginning of training when
the PM is untrained and with random initialization. Our re-
sults show that the CD and PM are able to learn intuitions
that hold true in conventional multi-view stereo.

Strategy #1 – Maximize Coverage: When given the op-
tion to place up to 5 cameras, the CD places 1 camera 7.6%
of the time and 2, 3, 4, and 5 cameras 27.7%, 36.6%, 22.7%,
5.4% times, respectively. Fig. 5b shows the heatmaps of
where the CD decides to place each camera, specifically
when the CD chose to place exactly three cameras. The
heatmaps denote the number of times the CD placed the
camera at a particular location over the course of 7000 ex-
periments, where each experiment denotes the placement of
a new random size sphere at a random location. From the
heatmaps, we see that the CD strategically placed the cam-
eras at locations that maximize the baselines between differ-
ent cameras. Camera 1 was predominantly placed in the left
side of the allowed region, camera 2 at the center bottom,
and camera 3 at the right. From these results, we see that
the CD optimizes to place more cameras spaced far apart.
However, placing more cameras doesn’t necessarily mean
that the CD is obtaining multiple views of the object (e.g.
some cameras may be pointed in the opposite direction of

the object). Therefore, we account for this case by defining
the metric of coverage, which defines the number of cam-
eras that have at least one pixel viewing the object. The CD
policy learns a configuration which maximizes coverage of
the allowed region. We find that performance improves as
coverage increases from 0 to 3, with the L1 loss being 14.0,
9.2, 7.2, and 5.7 as the coverage increases. Coverage is dis-
cussed in detail in the supplementary.
Strategy #2 – Multi-View Cues and Maximal Baseline:
Fig. 5c shows that the PM learns to exploit stereo cues when
presented with multiple images. The experiment shown
here compares the PM performance on a one-camera, two-
camera, and three-camera system when estimating the depth
of a sphere (averaged over 1000 different spheres of varying
size and depth). All three systems have a camera that can be
moved along the x axis, the two- and three-camera system
have a fixed camera at x = −15, and the three-camera sys-
tem has an additional fixed camera at x = 0. The blue curve
illustrates the L1 loss between the ground truth and one-
camera system predictions. The red and green curves illus-
trate the performance of the two-camera and three-camera
system respectively. The three-camera system performs
slightly better than the two-camera system, and both per-
form significantly better than the one-camera system. The
multi-view systems also see a decrease in loss (and vari-
ance) as the baseline between the cameras increases (i.e.
as the movable camera moves along the +x axis). These
curves indicate that the PM has learned similar wisdom to
that of conventional stereo – multiple views with a large
baseline enable better depth estimation [5]. While gradient
descent could also be used to learn to maximize baseline
given a differentiable simulator, we use RL, which can be
used with non-differentiable simulators to search over both
number of cameras and their baseline.
Searching Illumination: We also repeated the above ex-
periment with an expanded action space that includes angle
and intensity of a single spot light at a fixed position. To es-
timate the depth of the sphere, the CD must learn to sweep
the light over the scene with a sufficiently high intensity
until the sphere is illuminated. At each step, angle and in-
tensity can be changed within the bounds of [−60◦, 60◦]
and [0, 1], respectively, where 0 leaves the scene dark and
1 illuminates it. We found that the CD learns to increase
the intensity so the sphere can be illuminated and change
the angle such that the number of illuminated pixels on the
sphere consistently increases over the episode.

4.2. Camera Rigs for Autonomous Vehicles

Next, we describe how our method can be used to op-
timize an AV camera rig for the perception task of bird’s
eye view (BEV) segmentation by jointly training the CD
and PM. We validate our approach with three sets of ex-
periments, described in the Experiment Details section be-

Figure 6: Autonomous Vehicle (AV) Camera Rig Task & Results: We demonstrate that our approach can be used to create AV camera
rigs that are optimized for BEV segmentation. (Left) Our search space is shown – in expt. a, we optimize the height, pitch, and FoV of a
single camera rig, while in expt. b and c, we optimize # cameras, x, y, z, pitch, yaw, and FoV. Results for each experiment are shown and
we compare the optimized camera rig to the camera rig used in nuScenes [8]. In expt. c, the camera designer learns to place fewer cameras
in only the direction where cars are placed. We also show the BEV segmentation predictions of our jointly trained perception model.

Figure 7: Results for AV Camera Rig Co-Design: Shown are the
reward curves for the CD optimizing camera rigs for BEV segmen-
tation. Reward is intersection over union (IoU). To demonstrate
the effectiveness of co-designing the camera configuration with
the perception model (PM), we show results when the PM is pre-
trained and frozen (blue) vs. pre-trained and fine-tuned (green).
Compared to random search (red), where actions are uniformly
sampled from a random distribution at each step, our approach
significantly outperforms, and discovers camera rigs that increase
BEV segmentation IoU.

low. We find that the rigs created with our approach lead
to higher BEV segmentation accuracy in our environment
compared to the industry-standard nuScenes [8] rig. Our
camera rig search space and results are visualized in Fig. 6.

4.2.1 Experimental Setup

Environment: We use the CARLA Simulator [14] to ren-
der observations from candidate camera rigs selected by the
CD during training. For every camera on the candidate rig,
the environment returns images, extrinsics, intrinsics, and
3D bounding box labels of vehicles in the scene. The 3D
bounding boxes are used to compute the reward (for train-
ing the CD) and loss (for fine-tuning the PM). We use the
same CARLA environment to create 25,000 samples ren-
dered from randomly generated camera rigs to pre-train the

IoU (Expt. a) IoU (Expt. b)
Random Rig 0.254 0.084
nuScenes Rig 0.267 0.355
Our Rig 0.341 0.427

Table 1: We compare the BEV segmentation IoU for models
trained and tested with a random rig, nuScenes rig, and our ap-
proach’s rig. CARLA train and test scenes are the same for each.
Our rig achieves higher performance than industry standards.

PM for the task of BEV segmentation.
Action Space: The action space for AV camera rig de-
sign is (p,x,y,z,θ,β,λ) = {p ∈ [0,1], x ∈ ηx, y ∈
ηy, z ∈ [zmax, zmax + 0.5m], θ ∈ [−180◦, 180◦), β ∈
[−20◦, 20◦], λ ∈ [50◦, 120◦]}, where p is the camera place-
ment probability, (x,y,z) is location, θ is yaw, β is pitch,
and λ is FoV. ηx and ηy are the extents of the ego-vehicle
in x and y, respectively, and zmax is the height of the ego-
vehicle, meaning cameras can be placed anywhere within
0.5 meters (m) above the ego-vehicle. This action space
conforms with rooftop rigs used in industry and the size and
height of the roof match the Renault Zoe from nuScenes.
Experiment Details: We use a recent BEV segmentation
model, Cross View Transformers (CVT) [47], as the PM. It
is first pre-trained on a dataset containing randomly placed
cameras to allow it to more easily generalize to all candi-
date camera rigs that the CD may select. We then use the
pre-trained CVT model to initialize the PM and CD’s PPO
backbone. Finally, we train the CD to optimize camera rigs.
The PM uses the observations from each candidate rig and
3D bounding box labels to compute a reward (IoU) and loss
(binary segmentation loss). The reward is used to update the
candidate camera configuration, while the loss is used to up-
date the PM. We conduct three sets of experiments, one with
a single camera rig (expt. a), one with a multi-camera rig

(expt. b), and one with a custom scenario and penalty for
placing many cameras (expt. c). Each experiment is con-
ducted with a frozen and a jointly trained PM. Fig. 7 shows
that joint training leads to higher rewards (IoU).

• Expt. a: The CD exercises a limited action space, in-
cluding only (p,z,β,λ) for a single camera on the front
of the ego-vehicle. We use the same formulation as
described above, but, at each step, if the CD places a
camera, the previous camera is replaced, rather than
the new one being added on the rig. After six steps,
the episode terminates.

• Expt. b: The CD exercises the full action space, in-
cluding (p,x,y,z,θ,β,λ). Cameras are placed within a
bounding box on top of the ego-vehicle, as shown in
Fig. 6. For comparison with the nuScenes rig, which
has six cameras, we set the episode length to six, so at
most six cameras can be placed.

• Expt. c: This experiment includes two modifications
to Expt. b. First, a penalty is enforced each time a
camera is added to the rig to disincentivize the CD
from placing unnecessary cameras. Second, the dis-
tribution of vehicles during training is changed to only
be in front of the ego-vehicle to demonstrate that the
CD can customize its rig design to specific scenarios.

We collect data on a Tesla Model 3 (TM3) since Re-
nault Zoe (RZ) is not available in CARLA (placing cameras
within the bounds of the RZ roof). Since TM3 is slightly
smaller than RZ, this does not significantly affect what the
cameras see. Our approach is flexible and the action space
can be changed or other constraints added per requirements.
Evaluation Protocol: After training, we use the following
protocol to evaluate the quality of the CD-optimized camera
rigs. First, we test the CD over 100 episodes, saving the
candidate camera rig and sum of rewards at the end of each
episode. We then select the top 20 rigs based on their sum
of rewards. We fix these rigs and evaluate them over more
episodes (20), again recording their sum of rewards. We
sort the top twenty rigs by their sum of rewards and select
the rig with the top reward, which we call the selected rig.

We test the efficacy of the selected rig by comparing its
BEV performance to that of the nuScenes [8] rig. To com-
pare BEV performance, we collect 25,000 training images
and 5,000 test images in CARLA using both our selected
rig and the nuScenes rig. We do this by deploying both rigs
on a Tesla Model 3. Next, we train one BEV segmenta-
tion model for each rig, using the collected training data.
Finally, we test both BEV segmentation models on the cor-
responding test dataset captured from that rig. By collecting
train and test data in the exact same CARLA scenes, we en-
sure a fair comparison. The test IoU then serves as a final
measure of the selected rig’s utility for BEV segmentation.

4.2.2 Results and Discussion

As shown in Fig. 7, the CD significantly outperforms ran-
dom search, and we observe that the rewards consistently
increase over time across experiments. While using the pre-
trained, frozen PM allows the CD to create camera config-
urations that increase BEV segmentation accuracy, jointly
training the PM and CD together yields the best results.
We note that the pre-trained CVT model (before RL) has
9% and 11% IoU for expts a and b, respectively, due to the
challenging nature of fitting across many rigs. This IoU is
improved during joint training. Using the above evaluation
protocol for our CD, we find rigs created with the CD, for
both experiments a and b, outperform the nuScenes rig on
the task of BEV segmentation in our CARLA environment,
as shown in Table 1. The top rigs for each experiment, ex-
ample images from our rig vs. nuScenes, and a PM predic-
tion are shown in Fig. 6. In expt. b, the CD can place up to
the number of cameras in nuScenes (six). We find that the
created rigs conform with AV conventions in several ways,
such as distributing views around the ego-vehicle and us-
ing varying FoVs. While AV rigs, such as nuScenes, are
well-engineered, our method suggests it may be possible to
further improve them for specific tasks and environments.

In expt. b, the CD learns to place the maximum num-
ber of cameras (six) on the rig since there is no penalty for
placing additional cameras. However, in many cases, AV
companies may want to reduce rig cost and inference time
by using fewer cameras. Different camera rigs may also be
better suited to different AV scenarios. We test whether the
CD can take both of these considerations into account in
expt. c by only placing cars in front of the ego-vehicle and
enforcing a penalty to the reward each time an additional
camera is added to the rig. As a result, we find that the CD
places fewer cameras and places them facing forward, as
shown in Fig. 7. This result demonstrates that our approach
can be used to build resource limited imaging systems that
are well suited for specific test scenarios.

Strategy #1 - Camera Placement: Across experiments, we
observe that the CD consistently learned two behaviors that
lead to increased performance: (1) maximize camera height
to 0.5 m above the ego-vehicle, and (2) reduce camera pitch
to −20◦. Maximizing camera height reduces the number
of occlusions, thus leading to more ground truth pixels, and
potentially incentivizing this behavior. However, we note
the average number of 3D bounding box labels across both
test sets is the same, suggesting occlusions do not incen-
tivize higher camera placement and BEV segmentation per-
formance is naturally improved with higher camera posi-
tions. The negative pitch could mean the CD has learned
to prioritize detecting nearby cars, perhaps because the per-
ception model has higher confidence of those predictions.
We also observe that all vehicles in the scene are still visi-

ble with a −20◦ pitch, and only the sky is cropped, thus the
CD reduces the number of uninformative pixels, while max-
imizing the number of pixels on the road. Finally, we find
that two front-facing cameras are placed at the rear of the
vehicle in expt. b. We ablate this placement by re-training
the PM with both cameras moved to the front. IoU is 5%
better when the cameras are in the back, perhaps since, by
placing the front-facing cameras at the back, both the front
and sides of the ego-vehicle are visible in captured images.
Strategy #2 - FoV vs Object Resolution: In expt. a, we
found the FoV was always maximized by the CD, which
makes sense because it allows the CD to obtain higher re-
ward when more vehicles in the scene are visible. In expt.
b, the FoV of the target rig varies between 85◦ and 120◦,
suggesting when all of the scene is visible (as is the case in
expt. b due to the CD learning to distribute the camera yaws
in all directions), FoV is less important or that the CD may
have learned a tradeoff between FoV and object resolution.
Limitations: We demonstrate the CD on a limited number
of scenarios within CARLA and focus only on the task of
BEV segmentation of vehicles. In the future, our approach
can be applied to more scenarios, tasks, and object classes.
In addition, our experiments are done in simulation only.
That said, our method has a direct path to real-world use. It
can be used by AV companies to design rigs using their own
simulator and requirements; those rigs can then be deployed
on test cars to collect data. As AV simulators improve, we
expect any gap in rig utility in sim vs real to fall.

5. Conclusion
Our paper proposes a novel method to co-design cam-

era configurations with perception models (PMs) for task-
specific applications. We define a context-free grammar
(CFG) that serves as a search space and theoretical frame-
work for imaging system design. We then propose a camera
designer (CD) that uses reinforcement learning to co-learn
a camera configuration and PM for the proposed task by
transforming the CFG into a state-action space. The PM
is jointly trained with the CD and predicts the task output,
which is used to compute the PM loss and reward for the
CD to propose better candidate camera configurations. We
demonstrate our method for co-design by applying it to (1)
depth estimation using stereo cues, and (2) optimizing cam-
era rigs for autonomous vehicle perception. We show in
both cases that CD and PM can be learned together. Our
co-design framework shows that camera configurations and
perception models are closely linked and task-specific opti-
mal designs that outperform human designs can be searched
for computationally.

Acknowledgements: We would like to thank Siddharth
Somasundaram for his diligent proofreading of the paper.
KT was supported by the SMART Contract IARPA Grant

#2021-20111000004. We would also like to thank Systems
& Technology Research (STR).

References
[1] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen

Sun, Mario Lucic, and Cordelia Schmid. Vivit: A video vi-
sion transformer. 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 6816–6826, 2021. 6

[2] Seung-Hwan Baek and Felix Heide. Polka lines: Learning
structured illumination and reconstruction for active stereo.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5757–5767, 2021. 2

[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. In International Conference on Learning
Representations. 3

[4] James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. Journal of machine learning
research, 13(2), 2012. 5

[5] Ayush Bhandari, Achuta Kadambi, and Ramesh Raskar.
Computational Imaging. MIT Press, 2022. 3, 6

[6] Gary Bradski. The opencv library. Dr. Dobb’s Journal: Soft-
ware Tools for the Professional Programmer, 25(11):120–
123, 2000. 3

[7] Cameron B Browne, Edward Powley, Daniel Whitehouse,
Simon M Lucas, Peter I Cowling, Philipp Rohlfshagen,
Stephen Tavener, Diego Perez, Spyridon Samothrakis, and
Simon Colton. A survey of monte carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012. 4

[8] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020. 7, 8

[9] Ayan Chakrabarti. Learning sensor multiplexing design
through back-propagation. Advances in Neural Information
Processing Systems, 29, 2016. 2

[10] Julie Chang, Vincent Sitzmann, Xiong Dun, Wolfgang Hei-
drich, and Gordon Wetzstein. Hybrid optical-electronic con-
volutional neural networks with optimized diffractive optics
for image classification. Scientific reports, 8(1):1–10, 2018.
2

[11] Julie Chang and Gordon Wetzstein. Deep optics for monocu-
lar depth estimation and 3d object detection. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, pages 10193–10202, 2019. 2

[12] Philipp Del Hougne, Mohammadreza F Imani, Aaron V
Diebold, Roarke Horstmeyer, and David R Smith. Learned
integrated sensing pipeline: Reconfigurable metasurface
transceivers as trainable physical layer in an artificial neural
network. Advanced Science, 7(3):1901913, 2020. 2

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 6

[14] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Anto-
nio Lopez, and Vladlen Koltun. Carla: An open urban driv-
ing simulator. In Conference on robot learning, pages 1–16.
PMLR, 2017. 7

[15] Iddo Drori, Yamuna Krishnamurthy, Raoni Lourenço, Rémi
Rampin, Kyunghyun Cho, Cláudio T. Silva, and Juliana
Freire. Automatic machine learning by pipeline synthesis
using model-based reinforcement learning and a grammar.
CoRR, abs/1905.10345, 2019. 3

[16] Epic Games. Unreal engine. 4
[17] Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert,

Bernardino Romera-Paredes, Mohammadamin Barekatain,
Alexander Novikov, Francisco J R Ruiz, Julian Schrittwieser,
Grzegorz Swirszcz, et al. Discovering faster matrix multi-
plication algorithms with reinforcement learning. Nature,
610(7930):47–53, 2022. 3

[18] Joseph M Geary. Introduction to lens design: with practi-
cal ZEMAX examples. Willmann-Bell Richmond, VA, USA:,
2002. 4

[19] Minghao Guo, Wan Shou, Liane Makatura, Timothy Erps,
Michael Foshey, and Wojciech Matusik. Polygrammar:
grammar for digital polymer representation and generation.
Advanced Science, 9(23):2101864, 2022. 3

[20] Minghao Guo, Veronika Thost, Beichen Li, Payel Das, Jie
Chen, and Wojciech Matusik. Data-efficient graph gram-
mar learning for molecular generation. arXiv preprint
arXiv:2203.08031, 2022. 3

[21] John K Haas. A history of the unity game engine. 2014. 4
[22] Harel Haim, Shay Elmalem, Raja Giryes, Alex M Bronstein,

and Emanuel Marom. Depth estimation from a single image
using deep learned phase coded mask. IEEE Transactions on
Computational Imaging, 4(3):298–310, 2018. 2

[23] Lei He, Guanghui Wang, and Zhanyi Hu. Learning depth
from single images with deep neural network embedding
focal length. IEEE Transactions on Image Processing,
27(9):4676–4689, 2018. 2

[24] John Jumper, Richard Evans, Alexander Pritzel, Tim Green,
Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvu-
nakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold.
Nature, 596(7873):583–589, 2021. 3

[25] Michael Katz, Parikshit Ram, Shirin Sohrabi, and Octavian
Udrea. Exploring context-free languages via planning: The
case for automating machine learning. Proceedings of the In-
ternational Conference on Automated Planning and Schedul-
ing, 30(1):403–411, Jun. 2020. 3

[26] Tzofi Klinghoffer, Siddharth Somasundaram, Kushagra Ti-
wary, and Ramesh Raskar. Physics vs. learned priors: Re-
thinking camera and algorithm design for task-specific imag-
ing. In 2022 IEEE International Conference on Computa-
tional Photography (ICCP), pages 1–12. IEEE, 2022. 2

[27] Levente Kocsis and Csaba Szepesvári. Bandit based monte-
carlo planning. In Johannes Fürnkranz, Tobias Scheffer,

and Myra Spiliopoulou, editors, Machine Learning: ECML
2006, pages 282–293, Berlin, Heidelberg, 2006. Springer
Berlin Heidelberg. 3

[28] Michael F Land and Dan-Eric Nilsson. Animal eyes. OUP
Oxford, 2012. 1

[29] Sergey Levine, Aviral Kumar, George Tucker, and Justin
Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint
arXiv:2005.01643, 2020. 5

[30] Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehti-
nen. Differentiable monte carlo ray tracing through edge
sampling. ACM Trans. Graph. (Proc. SIGGRAPH Asia),
37(6):222:1–222:11, 2018. 5

[31] Wenjie Luo, Alexander G Schwing, and Raquel Urtasun. Ef-
ficient deep learning for stereo matching. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 5695–5703, 2016. 3

[32] Radu Marinescu, Akihiro Kishimoto, Parikshit Ram, Ambr-
ish Rawat, Martin Wistuba, Paulito P. Palmes, and Adi Botea.
Searching for machine learning pipelines using a context-
free grammar. Proceedings of the AAAI Conference on Arti-
ficial Intelligence, 35(10):8902–8911, May 2021. 3

[33] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and
Evgeny Burnaev. Reinforcement learning for combinatorial
optimization: A survey. Computers & Operations Research,
134:105400, 2021. 3

[34] Christopher A Metzler, Hayato Ikoma, Yifan Peng, and Gor-
don Wetzstein. Deep optics for single-shot high-dynamic-
range imaging. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1375–
1385, 2020. 2

[35] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wen-
jie Jiang, Ebrahim Songhori, Shen Wang, Young-Joon Lee,
Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph
placement methodology for fast chip design. Nature,
594(7862):207–212, 2021. 3

[36] Emmanuel Onzon, Fahim Mannan, and Felix Heide. Neu-
ral auto-exposure for high-dynamic range object detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7710–7720, 2021. 2

[37] Nicolas Robidoux, Luis E Garcia Capel, Dong-eun Seo,
Avinash Sharma, Federico Ariza, and Felix Heide. End-to-
end high dynamic range camera pipeline optimization. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 6297–6307, 2021. 2

[38] Jonathan Schaeffer and Aske Plaat. New advances in alpha-
beta searching. In Proceedings of the 1996 ACM 24th annual
conference on Computer science, pages 124–130, 1996. 4

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 2, 3

[40] Javier Selva, Anders S Johansen, Sergio Escalera, Kamal
Nasrollahi, Thomas B Moeslund, and Albert Clapés. Video
transformers: A survey. arXiv preprint arXiv:2201.05991,
2022. 5

[41] V. Sitzmann, S. Diamond, Y. Peng, X. Dun, S. Boyd, W.
Heidrich, F. Heide, and G. Wetzstein. End-to-end optimiza-
tion of optics and image processing for achromatic extended

depth of field and super-resolution imaging. ACM Trans.
Graph. (SIGGRAPH), 2018. 2

[42] Qilin Sun, Ethan Tseng, Qiang Fu, Wolfgang Heidrich,
and Felix Heide. Learning rank-1 diffractive optics for
single-shot high dynamic range imaging. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 1386–1396, 2020. 2

[43] Ethan Tseng, Ali Mosleh, Fahim Mannan, Karl St-Arnaud,
Avinash Sharma, Yifan Peng, Alexander Braun, Derek
Nowrouzezahrai, Jean-Francois Lalonde, and Felix Heide.
Differentiable compound optics and processing pipeline op-
timization for end-to-end camera design. ACM Transactions
on Graphics (TOG), 40(2):1–19, 2021. 2

[44] Hernan Ceferino Vazquez, Jorge Sánchez, and Rafael Car-
rascosa. GramML: Exploring context-free grammars with
model-free reinforcement learning. In Sixth Workshop on
Meta-Learning at the Conference on Neural Information
Processing Systems, 2022. 3

[45] Tianyu Zhang, Amin Banitalebi-Dehkordi, and Yong Zhang.
Deep reinforcement learning for exact combinatorial opti-
mization: Learning to branch. In 2022 26th International
Conference on Pattern Recognition (ICPR), pages 3105–
3111. IEEE, 2022. 3

[46] Allan Zhao, Tao Du, Jie Xu, Josie Hughes, Juan Salazar,
Pingchuan Ma, Wei Wang, Daniela Rus, and Wojciech Ma-
tusik. Automatic co-design of aerial robots using a graph
grammar. In 2022 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 11260–11267.
IEEE, 2022. 3

[47] Brady Zhou and Philipp Krähenbühl. Cross-view transform-
ers for real-time map-view semantic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 13760–13769, 2022. 7

[48] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 5

